Duamol gas ideal pada awalnya bersuhu 27 0 C, volume V 1 dan tekanan p 1 = 6,0 atm. Gas mengembang secara isotermik ke volume V 2 dan tekanan p 2 = 3,0 atm. Hitung usaha luas yang dilakukan gas! Solusi: Kita hitung dahulu ratio V 2 /V 1 dengan menggunakan persamaan gas ideal untuk proses isotermik, Suatugas ideal berada di dalam wadah bervolume 3 liter pada suhu 27 0 C. Gas itu dipanaskan dengan tekanan tetap 1 atmosfer sampai mencapai suhu 227 0 C. hitung kerja yang dilakukan gas! Tiga mol gas memuai secara isotermal pada suhu 27 0 C, Sejumlah 1,5 m3 gas helium yang bersuhu 27oC dipanaskan secara isobarik sampai 87oC. Jika Sejumlahgas ideal mengalami ekspansi sehingga volumenya menjadi 2 kali semula, ternyata energi dalam gas empat kali semula. Dua mol gas monoatomik mendapatkan kalor sebanyak 1297,14 Joule secara isokhorik. Mesin Carnot menerima 1.000 kkal berdasarkan reservoir 627°C serta mengeluarkannya pada reservoir 27°C. Banyaknya kalor yang Duamol gas ideal pada awalnya bersuhu 27 C, volume V 1 dan tekanan P 1 =6 ,0 atm Gas mengembang SeCar isotermik ke volume V, dan tekanan P 2 =3,0atm Hitunglah usaha luar yang dilakukan gas s(R=8,31 Jlm01 K). Soal. 10th-13th grade Ilmu Pengetahuan Alam. Jawaban. Qanda teacher - Hery. dalamgas ideal pertama dengan energi gas ideal kedua? 2. 1,5m3 gas helium yang bersuhu 27OC dipanaskan secara isobarik sampai 87OC. Jika tekanan gas helium 2 x 105 N/m2, maka tentukan usaha yang dilakukan gas helium! 3. Sepuluh mol gas ideal menempati suatu silinder berpengisap tanpa gesekan, mula-mula mempunyai suhu T. Gas tersebut kemudian A45 C B 77 C C 84 C D 88 C E 95 C TEORI KINETIK GAS DAN Termodinamika 59Suatu from MECHANICAL 224 at Muhammad Ali Jinnah University, Islamabad. Study Resources. Main Menu; by School; by Literature Title; by Subject; by Study Guides; Textbook Solutions Expert Tutors Earn. Main Menu; Earn Free Access; Upload Documents; Suatugas ideal, dalam suatu ruang tertutup bersuhu 27ºC. Untuk mengubah energi kinetik partikelnya menjadi 2 Ek, suhu gas harus dijadikan . a. 37 oC d. 327 oC. b. 45 oC e. 927 oC. c. 310 oC. 8. Sebanyak 4 gram gas neon dengan massa molekul 6 g/mol bersuhu 38 °C. Duamol gas ideal pada awalnya bersuhu 27 C, volume V1, dan tekanan P1=6,0 atm. Gas mengembang secara'isotermik dan mencapai volume V2 dan tekanan P2=3,0 atm. Hitunglah usaha luar yang dilakukan gas. (R=8,3 J/mol K) Hukum I Termodinamika; Hukum Termodinamika; Termodinamika; Fisika pKgb. Kelas 11 SMAHukum TermodinamikaHukum I TermodinamikaSuhu tiga mol suatu gas ideal adalah 373 K. Berapa besar usaha yang dilakukan gas dalam pemuaian secara isotermal untuk mencapai empat kali volume awalnya?Hukum I TermodinamikaHukum TermodinamikaTermodinamikaFisikaRekomendasi video solusi lainnya0132Perhatikan gambar di bawah ini! p x10^5 N/m^2 8 4 2 12 ...0241Sebuah mesin Carnot yang menggunakan reservoir suhu tingg...0438Suatu gas ideal mengalami proses siklussepertipada diagra...0239Perhatikan gambar berikut ini! PPa 10^5 B A 1 2 3 4 5 6...Teks videoHai conferencing ada soal dimana suhu 3 mol suatu gas ideal adalah 373 k, maka berapa besar usaha yang dilakukan gas dalam pemuaian secara isotermal untuk mencapai 4 kali volume awalnya jadi diketahui jumlah molnya atau n itu adalah 3 mol besar suhu atau teh yaitu adalah 373 K dan besarnya volume akhir atau V2 yaitu adalah 4 kali volume awal dari 4 x 1 maka inversnya adalah Berapa besar usaha yang dilakukan gas atau uap nya untuk mengerjakan soal ini kita dapat menggunakan persamaan usaha yang dilakukan gas ideal pada kondisi isotermal yaitu w = n * r * t dan V2 batu di mana kue adalah usaha n adalah jumlah mol R adalah tetapan gas ideal yaitu 8,314 5 joule per mol k t adalah suhu V2 adalah volume akhir dan V1 adalah volume awalnya karangsalam rumusnya maka W = N2 3 mol X Ar nya yaitu adalah 8,3 14 5 joule per mol k dikali t nya yaitu 2 373 k lalu dikali Land V2 nya itu dengan 4 kali 1 per 101 nya Jadi besar usaha atau yaitu adalah 12897,908 Joule ya jadi besar usaha yang dilakukan gas ideal ini pada kondisi pemuaian secara isotermal adalah 12897 koma 98 Joule ya. Terima kasih sampai pada soal nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Dalam artikel ini akan membahas tentang teori kinetik gas secara keseluruhan, mulai dari pengertian gas ideal, persamamaan umum gas ideal, persamaan keadaan gas ideal, tekanan gas ideal, energi kinetik gas ideal, dan energi dalam gas ideal. Yuk, simak pembahasan lengkap tentang teori kinetik gas di bawah ini! Hai Quipperian, bagaimana kabarnya? Semoga selalu sehat dan tetap semangat, ya! Siapa di antara Quipperian yang pernah mengalami ban kempes? Ban bisa mengalami kempes karena udara di dalamnya mengalami penyusutan. Nah, penyusutan itu biasanya dipengaruhi oleh suhu. Saat suhu di dalam ban naik, tekanannya juga akan naik. Akibat peningkatan tekanan tersebut, volume udara di dalam ban akan semakin berkurang. Tak heran jika ban akhirnya menyusut atau kempes. Untuk menghindari terjadinya ban kempes, Quipperian harus meletakkan sepeda di tempat yang teduh dan tidak terpapar sinar Matahari dalam waktu lama. Lalu, mengapa suhu bisa berpengaruh pada tekanan dan volume? Itulah prinsip utama gas ideal yang ada di dalam teori kinetik gas. Ingin tahu pembahasannya lebih lanjut? Check this out! Pengertian Gas Ideal Gas ideal adalah sekumpulan partikel gas yang tidak saling berinteraksi satu dengan lainnya. Artinya, jarak antarpartikel gas ideal sangat berjauhan dan bergerak secara acak. Adapun sifat-sifat gas ideal adalah sebagai berikut. Partikelnya berjumlah banyak. Tidak ada interaksi antarpartikel atau tidak ada gaya tarik menarik antarpartikelnya. Jika dibandingkan ukuran ruangan, ukuran partikel gas ideal bisa diabaikan. Tumbukan yang terjadi antara partikel gas dan dinding ruangan merupakan tumbukan lenting sempurna. Partikel gas tersebar secara merata di dalam ruangan. Partikel gas bergerak secara acak ke segala arah. Berlaku Hukum Newton tentang gerak. Energi kinetik rata-rata molekul gas ideal sebanding dengan suhu mutlaknya. Lalu, apakah ada perumusan matematis terkait gas ideal? Persamaan Umum Gas Ideal Adapun persamaan umum gas ideal adalah sebagai berikut. Keterangan P = tekanan gas Pa; Mr = massa molekul relatif kg/mol; V = volume gas m3; Na = bilangan Avogadro = 6,02 × 1023 partikel/mol m = massa 1 partikel gas kg; R = tetapan gas ideal 8,314 × 103 J/ k = konstanta Boltzman 1,38 × 10-23 J/K; N = jumlah partikel gas; n = jumlah mol mol; ρ = massa jenis gas kg/m3; dan T = suhu gas K. Persamaan Keadaan Gas Ideal Pada ruang tertutup keadaan suatu gas ideal dipengaruhi oleh tekanan, suhu, volume dan jumlah molekul gas. Ternyata, ada beberapa hukum yang menjelaskan keterkaitan antara keempat besaran tersebut. 1. Hukum Boyle Hukum Boyle dicetuskan oleh seorang ilmuwan asal Inggris, yaitu Robert Boyle. Adapun pernyataan Hukum Boyle adalah “jika suhu suatu gas dijaga konstan, maka tekanan gas akan berbanding terbalik dengan volumenya”. Istilah lainnya bisa dinyatakan sebagai hasil kali antara tekanan dan volume suatu gas pada suhu tertentu adalah tetap isotermal. Secara matematis dirumuskan sebagai berikut. Keterangan P1 = tekanan gas pada keadaan 1 N/m2; V1 = volume gas pada keadaan 1 m3; P2 = tekanan gas pada keadaan 2 N/m2; dan V2 = volume gas pada keadaan 2 m3. 2. Hukum Charles Jika Hukum Boyle membahas pengaruh tekanan dan volume pada suhu tetap, tidak demikian dengan Hukum Charles. Hukum yang ditemukan oleh Jacques Charles ini menyatakan bahwa “jika tekanan suatu gas dijaga konstan, maka volume gas akan sebanding suhu mutlaknya”. Istilah lain dari Hukum Charles ini adalah hasil bagi antara volume dan suhu pada tekanan tetap isobar akan bernilai tetap. Secara matematis, dirumuskan sebagai berikut. Keterangan T1 = suhu gas pada keadaan 1 K; V1 = volume gas pada keadaan 1 m3; T2 = suhu gas pada keadaan 2 K; dan V2 = volume gas pada keadaan 2 m3. 3. Hukum Gay-Lussac Hukum Gay-Lussac ditemukan oleh seorang ilmuwan Kimia asal Prancis, yaitu Joseph Louis Gay-Lussac pada tahun 1802. Adapun pernyataan Hukum Gay-Lussac adalah “jika volume suatu gas dijaga konstan, tekanan gas akan sebanding dengan suhu mutlaknya”. Artinya, proses berlangsung dalam keadaan isokhorik volume tetap. Secara matematis, dirumuskan sebagai berikut. Keterangan P1 = tekanan gas pada keadaan 1 N/m2; T1 = suhu gas pada keadaan 1 K; P2 = tekanan gas pada keadaan 2 N/m2; serta T2 = suhu gas pada keadaan 2 K. 4. Hukum Boyle-Gay Lussac Hukum Boyle- Gay Lussac adalah “hasil kali antara tekanan dan volume dibagi suhu pada sejumlah partikel mol gas adalah tetap”. Secara matematis, dirumuskan sebagai berikut. Keterangan P1 = tekanan gas pada keadaan 1 N/m2; V1 = volume gas pada keadaan 1 m3; T1 = suhu gas pada keadaan 1 K; P2 = tekanan gas pada keadaan 2 N/m2; T2 = suhu gas pada keadaan 2 K; serta V2 = volume gas pada keadaan 2 m3. Tekanan Gas Ideal Keberadaan gas di ruang tertutup bisa mengakibatkan adanya tekanan. Tekanan tersebut disebabkan oleh adanya tumbukan antara partikel gas dan dinding tempat gas berada. Besarnya tekanan gas di ruang tertutup dirumuskan sebagai berikut. Keterangan P = tekanan gas N/m2; V = volume gas m3; m = massa partikel gas kg; N = jumlah partikel gas; Energi Kinetik Gas Ideal Energi kinetik gas ideal disebabkan oleh adanya gerakan partikel gas di dalam suatu ruangan. Gas selalu bergerak dengan kecepatan tertentu. Kecepatan inilah yang nantinya berpengaruh pada energi kinetik gas. Secara matematis, energi kinetik gas ideal dirumuskan sebagai berikut. Keterangan k = konstanta Boltzman 1,38 × 10-23 J/K; T = suhu gas K; N = jumlah partikel; n = jumlah mol gas mol; dan R = tetapan gas ideal 8,314 J/ Berdasarkan persamaan di atas, diperoleh persamaan untuk kecepatan efektif gas pada ruang tertutup. Adapun persamaan kecepatannya adalah sebagai berikut. Keterangan vrms = kecepatan efektif m/s; k = konstanta Boltzman 1,38 × 10-23 J/K; T = suhu gas K; m = massa partikel kg; Mr = massa molekul relatif kg/mol; n = jumlah mol gas mol; R = tetapan gas ideal 8,314 J/ P = tekanan gas Pa; dan ρ = massa jenis gas kg/m3. Energi Dalam Gas Ideal Pada pembahasan sebelumnya, Quipperian sudah belajar tentang energi kinetik gas, kan? Rumus energi kinetik tersebut berlaku untuk satu partikel maupun N partikel. Lalu, bagaimana jika seluruh energi kinetik partikel tersebut dijumlahkan? Ternyata, saat seluruh energi kinetik tersebut dijumlahkan, muncullah besaran yang disebut energi dalam gas ideal U. Energi dalam gas ideal dipengaruhi oleh derajat kebebasannya. Secara matematis, dirumuskan sebagai berikut. 1. Energi dalam untuk gas monoatomik, seperti He, Ne, Ar 2. Energi dalam untuk gas diatomik, seperti O2, N2, H2 a. Pada suhu rendah ±300 K Pada suhu rendah, energi dalam gas ideal dirumuskan sebagai berikut. b. Pada suhu sedang ±500 K Pada suhu sedang, energi dalam gas ideal dirumuskan sebagai berikut. c. Pada suhu tinggi ± K Pada suhu tinggi, energi dalam gas ideal dirumuskan sebagai berikut. Itulah pembahasan seputar teori kinetik gas. Persamaan-persamaan yang ada pada pembahasan tersebut, bisa Quipperian gunakan untuk menyelesaikan soal-soal terkait gas ideal. Ingin tahu contoh soalnya? Check this out! Contoh Soal 1 Tentukan volume 5 mol gas pada suhu dan tekanan standar 0o C dan 1 atm! Diketahui T = 0 + 273 = 273 K n = 5 mol R = 8,314 J/ P = 1 atm = 1,01 × 105 N/m2 Ditanya V =…? Pembahasan Untuk mencari volume, gunakan persamaan umum gas ideal berikut. Jadi, volume 5 mol gas pada suhu dan tekanan standar adalah 0,112 m3. Mudah sekali bukan? Ayo, lanjut ke contoh soal berikutnya! Contoh Soal 2 Diketahui Ditanya V2 =…? Pembahasan Untuk mencari volume akhir, gunakan persamaan Hukum Boyle-Gay Lussac. Jadi, volume akhir gas tersebut menjadi dua kali volume semula. Contoh Soal 3 Suatu gas monoatomik memiliki energi dalam 6 kJ dan berada pada suhu 27o C. Tentukan banyaknya mol gas tersebut! Diketahui U = 6 kJ = J R = 8,314 J/ T = 27 + 273 = 300 K Ditanya n =…? Pembahasan Untuk menentukan banyaknya mol gas monoatomik tersebut, gunakan persamaan energi dalam gas ideal untuk gas monoatomik. Jadi, banyaknya mol gas tersebut adalah 1,6 mol. Bagaimana Quipperian, sekarang sudah paham kan mengapa ban yang sering diletakkan di tempat panas bisa lebih cepat kempes? Ternyata, semua itu bisa dijelaskan dengan teori kinetik gas, lho. Jika Quipperian ingin meningkatkan pemahaman dengan berlatih mengerjakan soal, segera gabung dengan Quipper Video. Bersama Quipper Video, belajar jadi lebih mudah dan menyenangkan. Semangat! Penulis Eka Viandari Kelas 11 SMATeori Kinetik GasTeori Ekipartisi Energi dan Energi DalamDua mol gas ideal monoatomik suhunya dinaikkan dari 27 C menjadi 127 C pada tekanan tetap. Jika konstanta gas umum R = 8,31 J/mol K , hitunglaha. perubahan energi dalamb. usaha yang dilakukan oleh gasc. kalor yang diperlukanTeori Ekipartisi Energi dan Energi DalamHukum I TermodinamikaTeori Kinetik GasHukum TermodinamikaTermodinamikaFisikaRekomendasi video solusi lainnya0132Perhatikan gambar di bawah ini! p x10^5 N/m^2 8 4 2 12 ...0241Sebuah mesin Carnot yang menggunakan reservoir suhu tingg...0438Suatu gas ideal mengalami proses siklussepertipada diagra...0239Perhatikan gambar berikut ini! PPa 10^5 B A 1 2 3 4 5 6...Teks videoHalo Google pada soal ini kita diminta untuk menentukan perubahan energi dalam usaha yang dilakukan oleh gas dan kalor yang diperlukan jika di sini jumlah mol dari gas ideal monoatomik adalah sama dengan 2 mol suhunya dinaikkan dari T1 = 27 derajat Celcius satuannya kita Ubah menjadi Kelvin dengan ditambah 273 = 300 k suhu akhir adalah sama dengan satuannya kita Ubah menjadi Kelvin dengan ditambah 273 = 400 K adalah konstanta gas umum adalah R = 8,31 joule per mol k indah karena disini tekanan yang tetap maka prosesnya adalah isobarik untuk soal a. Perubahan energi dalam kita cari dengan persamaan perubahan energi dalam Gas monoatomik yaitu Delta u = 3 per 2 * N * R * Delta t adalah perubahan energi dalam R adalah konstanta gas umum kita gunakan nilai yang ini karena 1 tari tunggal adalah satuan dari suhu nya adalah k atau semua satuannya dalam satuan internasional lalu Delta t adalah perubahan suhunya itu suhu akhir atau T2 dikurangi 1 = 3 * 2 * 2 * 8,31 dalam kurung 400 dikurangi 300 = 2493 di dalam ini berarti pada sistem mengalami kenaikan suhu Kemudian untuk kita cari dulu volume awal dari gas dengan menggunakan persamaan umum gas ideal yaitu p 1 * 1 = m * a * t 1 V1 adalah tekanan awal V1 adalah volume awal T1 adalah suhu awal V1 ini karena tekanan yang tetap maka kita misalkan sebagai p x + 1 = 2 x 8,31 X 300 maka G 1 = 4986 per B satuannya adalah meter kubik kemudian kita gunakan persamaan umum gas ideal pada yang kedua yaitu 2 * V2 = n * r * t 2 P2 adalah tekanan akhir P2 adalah volume akhir V2 adalah suhu keduanya ini adalah P karena di sini tekanannya X V2 = 2 x 8,31 x 400 maka a per 2 = 6648 per P satuannya adalah meter kubik karena di sini prosesnya adalah x maka kita gunakan persamaan usaha untuk proses isobarik yaitu w = p * Delta v w adalah usaha P adalah tekanan rendah grave adalah perubahan volume paru-paru Volume ini adalah akhir atau dikurangi volume awal atau 1 = p * keduanya adalah 6648 P dikurangi salah satunya adalah 4986 per t = 1662 Joule usaha ini tandanya positif berarti sistem melakukan usaha Kemudian untuk soal C kita gunakan Persamaan Hukum 1 termodinamika yaitu = Delta U + W adalah kalor Delta u adalah perubahan energi dalam dan W adalah usaha = 2493 + 1662 = 5 berarti sejumlah kalor ditambahkan pada sistem dari perubahan energi dalamnya adalah 2493 Joule usaha yang dilakukan oleh gas adalah 1662 Joule dan kalor yang diperlukan adalah 4155 sekian pembahasan kali ini sampai jumpa di pembahasan soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul